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Adaptive targeting of chaos
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We report two adaptive methods for directing chaotic trajectories to desired targets that require only a single
“probing” of the target by the unperturbed dynamics. In contrast to previous targeting algorithms, these
methods do not requira priori information about the stable and unstable manifolds associated with the target
point and are not restricted to invertible mappings. The methods apply small perturbations to the state variables
(as opposed to parameteend can reduce the waiting time for the system to visit the target by more than two
orders of magnitude. Their robustness and lack of stringent requirements should make these methods easily
implementable in experimental applicatiop§1063-651X97)50305-9

PACS numbdss): 05.45+b

The targeting of chaos refers to a process wherein small, A method has recently been propo4@d to increase the
judiciously chosen perturbations are applied to a chaotic dyaumber of visits to a neighborhood of an arbitrary point on a
namical system to steer the orbit of a given point on a chachaotic attractor by making small perturbations of the state
otic attractor to a neighborhood of some prespecified poinVariables of the system. This method also requires a long
(targe} on the attractor within a specific timesually called  data acquisition time, and although it does not require an
the target timg In many cases, a small neighborhood of ajnyertible map, it guarantees control only for relatively large
given attractor point may be visited mfrequently; thus, theperturbations.
unperturbed dynamics may take a long time to approach a |, this paper, we present two adaptive strategies for tar-
given target. Efficient targeting methods can reduce the Wa'tgeting of chaos that overcome the difficulties mentioned
ing time by orders of magnitude.—35]. above. In particular, the strategies do not requre@riori

A natural application of targeting is to the so-called CONihformation about the stable and unstable manifolds associ-

trol of chaos, which tries to maintain a chaotic trajectory in : ; . . .
the neighborhood of a saddle periodic point. However, typi-ated with the target point, they are not restricted to invertible

cal control algorithmgsee, e.g.[6]) use a linearization of mapping_s, and they_ use on_ly small perturbations Qf available

the dynamics that is valid only in a rather small neighbor-State variables to direct trajectories to a small nelghborhood

hood of the desired saddle point. of the target. The strategies are_k_)ased on a recently intro-
Shinbrotet al. [1] suggested a method for directing tra- duced algorithm for chaos recognitipto], control[11], and

jectories to targets that used the exponential sensitivity of 8/Nchronizatior{12] that has also been utilized for filtering

chaotic process to tiny perturbations of an accessible contrdloise from chaotic datgl3].

parameter. The method has been applied to one-dimensional Let us consider a chaotic process ruled (dgt denotes

maps both theoreticallj2] and experimentally3] and has temporal derivative

been extended to three-dimensional chaotic flphis Kos- )

telich et al. [5] suggested a targeting procedure for cases x=f(x,u), (1)

where there is more than one positive Lyapunov exponent

associated with typical orbits on the attract@ee alsd7]  wherex is aD-dimensional vector=3), f is a nonlinear

for a review of these procedurgs. function ofx, andu is a vector of parameters. The targeting
The basic algorithm ifi5] consists of finding two succes- procedure consists of two par{d) an algorithm that slaves

sive changes of a single control paraméterone change of the chaotic dynamicx(t) to a given goal dynamicg/(t)

two control parameteysto move the image of the starting using only small perturbations of the state variables, @hnd

point onto the stable manifold of the target. The method isa goal dynamicg(t) that is compatible with the natural

robust against the presence of a small amount of noise or evolution of the system and that brings the trajectory to a

small modeling error, and further developments have pointedmall neighborhood of the target within the desired target

out how it helps in switching between controlled unstabletime starting from a given initial conditiog;(0)=gy. (The

periodic orbits in higher-dimensional chaotic systdi8is point gy lies on the attractor, and typically its neighborhood
The procedure, however, has two main limitatiotl: it is visited frequently by the unperturbed dynamjcs.
is only applicable to invertible mappings, afi@ it needs The idea of slaving the state variables to a goal dynamics

full a priori information on the stable and unstable manifoldswas first applied by Huebler for chaos contft¥].

of the target point. The latter requirement is a problem when Although we assume that the dynamics are governed by
the target is rarely visited by the natural evolution of theEq. (1), we emphasize that our approach does not require
system, because the algorithm requires a long data acquisixplicit knowledge of the vector fielfl (In contrast, the tar-
tion time to obtain points whose orbits visit neighborhoodsgeting methods described (5] and [14] assume thaf is

of the target. known) Moreover, we will show that our approach is effec-
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tive when perturbations can be applied only to a single statéself. As discussed 11,12, this adaptive time scale is
variable in the system, whereas in the case of Re&d], smaller than the time scale of the unstable periodic orbits
perturbation of all state variables was needed to assure coembedded within the chaotic attractor.
vergence ok to g. Notice that in the limito—0, the algorithm becomes
We consider the following cases in tur(t) the system equivalent to Pyragas’ control stratephb], which has been
allows detection and perturbation of all its state variablessuccessfully tested in low- and high-dimensional chaotic sys-
and(2) only a single state variable is available for observa-tems. Nonzero values of introduce a variable weighting
tion. In both cases, the algorithm can guarantee fast convefactor in Eq.(4) that keeps the perturbation small and applies

gence to a neighborhood of the target. it only when necessary.
Let us start with cas€l), where one can observe and Let us discuss the problem of constructing the goal dy-
perturb all the system state variables. ligt =t,+ 7,, namicsgr(t) from a preliminary observation of the unper-

where 7, is the adaptive observation time interv@®TI),  turbed behavior of the system. For the sake of example, we
specified below. For theth component ok (1<i<D), one  consider the three-dimensional $&ter systeni16]

measures the differences between the actual and the goal )

dynamics, given by X=—z-Yy

OXi(th+1) =Xi(th+1) = Gi(tns1), y=x+ay (5)

and their variation rates ovet,, given by 7=b+2(x—c)

Ai(t =(1/ log | 6%;(t 16x%;(ty)]. 2
i(tn+2)= (1/7n) 10g [8Xi(tn )/ (1) @ with a=b=0.2 andc=5.7. We first construct a partition of
The successive OTI is,, ;=min,—ip7},, Where the phase space in parallelograms of sides(e;,€;,€3).
' _ We definel (Xq,Y9,Zg,€) ={(X,Y,2) : Xq<X<Xo+ €1, Yo<Y
751'11:Tg>[1_tanr(g)\i(tn+l))], ©)) <ypte,, and zy<z<zy+es}. The initial condition
x(0)=y(0)=1, z(0)=4 is attracted to a chaotic set, a
The next observation is performedtat ,=t,,, 1+ 74 1- portion of which is contained in the parallelogram
The hyperbolic tangent function maps the whole range of(4.655 146;,-6.691 886,0.013 528), where €
o\ into the interval (1,1). The constant, strictly posi- =(0.205 382,0.186 303,0.228 361). This choiceeaforre-

tive, adjusts the sensitivity of the algorithm, and it is selectedsponds to a box whose sides are i@s long as the corre-
to preventr, ., from going to zerd 10]. Starting at timef,  sponding sides of the smallest parallelogram containing the
with 7= 70)(t,) and a giverdx;(t,), the observer produces attractor fort>9743.658 203 t(=t;=9743.658 203 is the
an OTI sequence that minimizes the second variations bdime at which the unperturbed trajectory generated by the

tween the actual and the goal dynamics. above initial conditions first entels).
The perturbation consists of the vectotJ(t) The construction of the goal dynamics exploits the natural
=(U4,U,, ... ,Up) given by evolution of the system from the initial condition up to the

first visit to the target. We do this by constructing a web of
paths, each of which is compatible with the unperturbed dy-
namics and connects different parallelogramsto That is,
(4)  we follow one or more trajectories for a given observation
interval. LetP(l¢) denote a preimage df-. We record the
to be added to Eq. (1), which now becomes portions of the observed trajectories that lie lin and
x=f(x,u) +U(t). The vectolJ is the product of two factors: P(l;). We then determine successive preimaged(@f;),
the weighting factoK; /7, 1, which is updated by the itera- which, in most cases, have been visited previously by the
tive algorithm discussed above, and the difference betweeportions of the observed trajectories. Going backward in
actual and goal dynamics, which assures the convergence tione, we are able to select from the observations a path that
the desired behaviafindeed, this term vanishes only when starts from the most frequently visited parallelogrgmand
actual and goal dynamics coincjde leads to the box; containing the targetOnce the trajectory

The quantities\; defined in Eq(2) give a local measure entersl, which typically is near a saddle periodic orbit, we
of the rate at which the actual orbit separates from the deapply one of the usual control algorithms to keep the trajec-
sired one. Indeed, i;<0, then locally theth component of tory near the saddleThe web of paths is illustrated sche-
the trajectory approaches the goal dynamics, that isjtthe matically in Fig. 1. This construction requires only a single
component shadows the desired dynamica,#0, then the probing of the target.
ith component of the trajectory moves away from the desired The goal dynamics is an observed path fropto I+.
one. Thus, the quantity reflects the frequency with which Since the natural measure bf is large (that is, it is fre-
the system must be perturbed to constrain it to shadow theguently visited by the unperturbed dynamiche target can
goal dynamics. be reached quickly regardless of the initial conditions.

The algorithm provides an adaptive time scale within Figure Za) reports the results of this targeting procedure.
which the dynamics selects the correction term to be addebh the trials reported herér is reached by the unperturbed
to the evolution equation of the system. The perturbation dynamics for the first time whet=30.9 sec, and thehy is
is inversely proportional to the adaptive OTI and thus isreached by the perturbed dynamics only 1.6 sec later. Thus,
weighted by the information extracted from the dynamicsthe total time required to reach the is 32.5 sec, compared

Ki )
Uiltns )= ——10i(tas ) =Xi(tn )], Ki>0, 1<i<D,
n
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embedding space containing the vectors(t)
BPUr) =[X(t),X(t=7), ... x(t—(D—1)7)]. (D=3 in our case.

The reconstructed attractor retains the basic metric properties
of the original; that is, points that are neighbors in the origi-
nal phase space with respect to a given mdttig remain

— neighbors in the embedding space with respect to some new
Q \ \Q metric Mg [18].
] We let7=5.711 57; this value corresponds to the inverse
T R(PU ))Q" frequency of the largest peak in the power spectrum of the
1 T . . . -
signalx(t). The target point in the original phase space, as
discussed in the first example, corresponds to the pgint
FIG. 1. Procedure for the construction of the goal dynargi¢y. Each = (X1(t1),Xt(tt— 7)., X7 (t1— 27))=(4.727 415, 4.295 067,
bubble re_presents_ the neighborhood ofapoint.in the phase s_lgaderggt; 4.929 038), Wher&T is the time at which the unperturbed
P(l7): unique preimage of the targd?; (P(l+)),j =1,2,3: multiple preim-  yoiactory first enters the neighborhood of the target. The

ages ofP(l); | : most frequently visited neighborhood. The selected path, . . .
is shown as a thick line. idea is to retrieve a scalar goal dynamigét) such that

9(to) =x7(ty—27), g(to+7)=xr(tr—7), and g(to+27)
to 9743 sec for the unperturbed dynamics to enter the sameXt(tr). Here t, is the instant at which the unper-
neighborhood, for a total speedup of two orders of magnifurbed — dynamics x(t) first satisfies the rela-
tude. Figure ) illustrates the mechanism that leads thetions xr(tr—27)— e/2<x(t)<x;(t;—27)+€,/2, where
system to the target: the path that is followed by the targeting1=0.205 382. These requirements assure that the perturba-
algorithm moves from high probability sections of the attrac-tions move a trajectory to the target within a target time
tor toward lower probability sections of the same attractoro+ 27, starting from any initial condition.
eventually reaching the desired target. The simplest choice df is the recorded unperturbed evo-
This procedure, however, requires all state variables to blition of x from t—27 to ty. It is possible that such a
accessible for measurement and perturbation. Thus it cannehoice ofg is not optimal. Indeed, since our observations
be applied in experimental situations, where often only aand perturbations are limited to a one-dimensional subspace
single state variable of the system is accessible. We nowf the original phase space, there is no certainty that at
show how to reformulate the adaptive targeting strategy by=t, [the instant at which the variable first enters thee;
restricting our measurements only to tkevariable of the interval of xt(t;—27)], the other unobserved variables are
Rossler system and applying the feedback perturbation onlyithin a sufficiently small distance from their values at
on the first of Egs(5). t;—27. The process could result in an unacceptably large
It has been showfil1] that the control procedure defined initial perturbation, so that another choice gfwould be
by Egs. (2)—(4) is effective in low- and high-dimensional necessary. Of course, other choicesgofre possible. For
cases even if the perturbations are restricted to a single staitestance, the evolution of(t) could be exploited more thor-
variable. Thus we can restrict attention to the casé. oughly by constructing two successive webs of one-
The problem is to retrieve a suitable scalar goal dynamicslimensional paths, the first connecting (t;—27) to
g(t) from the observations that is compatible with the unperx(t;—7), and the second connecting(t;—7) to x1(ty).
turbed evolution of the system and comes at least once The selection of a goal dynamics is complicated by the
within a suitable neighborhood of the target. We will use therequirement that paths reach from a given point to another
time delay embedding methdd7], which allows us to re- given point within a specified time. This requirement moti-
construct the attractor from a time series of measurements eoftes our choice of the delay timeas the reciprocal of the
a single variable, sax(t), from Egs.(5). By selecting a frequency of the main peak of the signal power spectrum;
suitable delay time7, we consider theD-dimensional this time is equivalent to the return time of the system onto

(@) (b)

FIG. 2. (a) An (x,y) projection of the unperturbed Rsler dynamicg¢dots and path followed by the perturbed dynamics to reach the tétijek dashed
line). The path is inside the chaotic attractts) Enlargement ofa): the path(solid line) moves from high probability regions of the attractor toward lower
probability regions, until reachind; (indicated as Target in the Figyrelnitial conditions and control parameters as in the text=10"5,
K;=K,=K3=0.01. Similar results hold for different choices ¥f, j=1,2,3, andos due to the adaptive nature of the algorithm.
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FIG. 3. (a) An (x,y) projection of the unperturbed Rsler dynamicg¢dots and path followed by the perturbed dynamics to reach the tétijek dashed
line). In this case the perturbation acts only on theariable of Eqs(5). Again, the path is inside the chaotic attractor; thus it is compatible with the natural
evolution of the system and it goes from higher to lower probability regidms.emporal evolution of the perturbation during the targeting process. The range
spanned byJ, is less than 1% of the range spanned byxhdynamics. Initial conditions and parameters as in the caption of Fil,2;0.02.

its Poincaresection. Indeed, if the system is chaotic and theto the target within a target time a@f-+67, which again is
observation interval of the recorded unperturbed dynamics imore than two orders of magnitude smaller than

sufficiently long, then only this choice of assures an er- The reconstruction in the real space represents a stringent
godic covering of all the states and guarantees the existeneest, since it demonstrates the accuracy and robustness of our
of at least one path from any initial state to any other finalmethod in targeting the desirdg, even with the simplest
state within observation interval. choice ofg. Figure 3b) shows the range of fluctuations of

However, these concerns are largely obviated by a suitthe perturbation, and Fig.(8 shows the range spanned by
able choice ofo#0 in the control algorithm. The adaptive the unperturbedx dynamics. These results illustrate the
nature of the procedure assures that the corrections remagmallness of the perturbation required by the adaptive
small, thus allowing simpler choices of the goal dynamics. method.

In our case, it is sufficient to chooggt) as the unper- It is relevant to notice that our adaptive approach accounts
turbed dynamics from; — N7 to t; (N>2) to guarantee fast also for the presence of noise, as already explicitly calculated
convergence to the target even for small perturbations. Whilén several situations in Ref§10—-13.
the integem should be selected as small as possible to mini- In conclusion, we have presented two adaptive targeting
mize the waiting time, larger values Nfimprove the robust- procedures that require only a single probing of the target by
ness of the method. Figurd&} reports the new phase space the natural evolution of the system. The methods are not
results forN=6. The system has been left unperturbed fromlimited to invertible mappings and do not neadpriori in-
t=0 (the same initial conditions as beforeuntii  formation on the stability properties of the target.
t=t,=12.9. Heret, is the instant at which the unperturbed E.K. is supported in part by the Department of Energy
dynamics first enters the, interval containingx(t;—67).  Office of Scientific Computing under Grant No. DE-FGO03-
The adaptive scalar perturbation has assured a convergen@éER25213.
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