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Adaptive targeting of chaos
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We report two adaptive methods for directing chaotic trajectories to desired targets that require only a single
‘‘probing’’ of the target by the unperturbed dynamics. In contrast to previous targeting algorithms, these
methods do not requirea priori information about the stable and unstable manifolds associated with the target
point and are not restricted to invertible mappings. The methods apply small perturbations to the state variables
~as opposed to parameters! and can reduce the waiting time for the system to visit the target by more than two
orders of magnitude. Their robustness and lack of stringent requirements should make these methods easily
implementable in experimental applications.@S1063-651X~97!50305-9#

PACS number~s!: 05.45.1b
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The targeting of chaos refers to a process wherein sm
judiciously chosen perturbations are applied to a chaotic
namical system to steer the orbit of a given point on a c
otic attractor to a neighborhood of some prespecified p
~target! on the attractor within a specific time~usually called
the target time!. In many cases, a small neighborhood o
given attractor point may be visited infrequently; thus, t
unperturbed dynamics may take a long time to approac
given target. Efficient targeting methods can reduce the w
ing time by orders of magnitude@1–5#.

A natural application of targeting is to the so-called co
trol of chaos, which tries to maintain a chaotic trajectory
the neighborhood of a saddle periodic point. However, ty
cal control algorithms~see, e.g.,@6#! use a linearization of
the dynamics that is valid only in a rather small neighb
hood of the desired saddle point.

Shinbrotet al. @1# suggested a method for directing tr
jectories to targets that used the exponential sensitivity o
chaotic process to tiny perturbations of an accessible con
parameter. The method has been applied to one-dimens
maps both theoretically@2# and experimentally@3# and has
been extended to three-dimensional chaotic flows@4#. Kos-
telich et al. @5# suggested a targeting procedure for ca
where there is more than one positive Lyapunov expon
associated with typical orbits on the attractor.~See also@7#
for a review of these procedures.!

The basic algorithm in@5# consists of finding two succes
sive changes of a single control parameter~or one change of
two control parameters! to move the image of the startin
point onto the stable manifold of the target. The method
robust against the presence of a small amount of noise
small modeling error, and further developments have poin
out how it helps in switching between controlled unsta
periodic orbits in higher-dimensional chaotic systems@8#.

The procedure, however, has two main limitations:~1! it
is only applicable to invertible mappings, and~2! it needs
full a priori information on the stable and unstable manifo
of the target point. The latter requirement is a problem wh
the target is rarely visited by the natural evolution of t
system, because the algorithm requires a long data acq
tion time to obtain points whose orbits visit neighborhoo
of the target.
551063-651X/97/55~5!/4845~4!/$10.00
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A method has recently been proposed@9# to increase the
number of visits to a neighborhood of an arbitrary point on
chaotic attractor by making small perturbations of the st
variables of the system. This method also requires a l
data acquisition time, and although it does not require
invertible map, it guarantees control only for relatively lar
perturbations.

In this paper, we present two adaptive strategies for
geting of chaos that overcome the difficulties mention
above. In particular, the strategies do not requirea priori
information about the stable and unstable manifolds ass
ated with the target point, they are not restricted to inverti
mappings, and they use only small perturbations of availa
state variables to direct trajectories to a small neighborh
of the target. The strategies are based on a recently in
duced algorithm for chaos recognition@10#, control@11#, and
synchronization@12# that has also been utilized for filterin
noise from chaotic data@13#.

Let us consider a chaotic process ruled by~dot denotes
temporal derivative!

ẋ5f~x,m!, ~1!

wherex is aD-dimensional vector (D>3), f is a nonlinear
function ofx, andm is a vector of parameters. The targetin
procedure consists of two parts:~1! an algorithm that slaves
the chaotic dynamicsx(t) to a given goal dynamicsg(t)
using only small perturbations of the state variables, and~2!
a goal dynamicsgT(t) that is compatible with the natura
evolution of the system and that brings the trajectory to
small neighborhood of the target within the desired tar
time starting from a given initial conditiongT(0)5g0. ~The
point g0 lies on the attractor, and typically its neighborhoo
is visited frequently by the unperturbed dynamics.!

The idea of slaving the state variables to a goal dynam
was first applied by Huebler for chaos control@14#.

Although we assume that the dynamics are governed
Eq. ~1!, we emphasize that our approach does not req
explicit knowledge of the vector fieldf. ~In contrast, the tar-
geting methods described in@5# and @14# assume thatf is
known.! Moreover, we will show that our approach is effe
R4845 © 1997 The American Physical Society



ta

co

es
a
ve

d

g

o

te

s
b

:
-
e
ce
n

d

ire

th

in
de

is
ic

bits

ys-

ies

dy-
r-
we

f

a
m

-
the

the

ral
e
of
dy-

on

the
in
that

e
ec-
-
le

re.
d

hus,

RAPID COMMUNICATIONS

R4846 55BOCCALETTI, FARINI, KOSTELICH, AND ARECCHI
tive when perturbations can be applied only to a single s
variable in the system, whereas in the case of Ref.@14#,
perturbation of all state variables was needed to assure
vergence ofx to g.

We consider the following cases in turn:~1! the system
allows detection and perturbation of all its state variabl
and ~2! only a single state variable is available for observ
tion. In both cases, the algorithm can guarantee fast con
gence to a neighborhood of the target.

Let us start with case~1!, where one can observe an
perturb all the system state variables. Lettn115tn1tn ,
where tn is the adaptive observation time interval~OTI!,
specified below. For thei th component ofx (1< i<D), one
measures the differences between the actual and the
dynamics, given by

dxi~ tn11!5xi~ tn11!2gi~ tn11!,

and their variation rates overtn , given by

l i~ tn11!5 ~1/tn! log udxi~ tn11!/dxi~ tn!u. ~2!

The successive OTI istn115min1<i<Dtn11
(i) , where

tn11
~ i ! 5tn

~ i !@12tanh„sl i~ tn11!…#. ~3!

The next observation is performed attn125tn111tn11.
The hyperbolic tangent function maps the whole range

sl into the interval (21,1). The constants, strictly posi-
tive, adjusts the sensitivity of the algorithm, and it is selec
to preventtn11 from going to zero@10#. Starting at timet0
with t0

( i )5t ( i )(t0) and a givendxi(t0), the observer produce
an OTI sequence that minimizes the second variations
tween the actual and the goal dynamics.

The perturbation consists of the vectorU(t)
[(U1 ,U2 , . . . ,UD) given by

Ui~ tn11!5
Ki

tn11
@gi~ tn11!2xi~ tn11!#, Ki.0, 1< i<D,

~4!

to be added to Eq. ~1!, which now becomes
ẋ5f(x,m)1U(t). The vectorU is the product of two factors
the weighting factorKi /tn11, which is updated by the itera
tive algorithm discussed above, and the difference betw
actual and goal dynamics, which assures the convergen
the desired behavior~indeed, this term vanishes only whe
actual and goal dynamics coincide!.

The quantitiesl i defined in Eq.~2! give a local measure
of the rate at which the actual orbit separates from the
sired one. Indeed, ifl i,0, then locally thei th component of
the trajectory approaches the goal dynamics, that is, thei th
component shadows the desired dynamics. Ifl i.0, then the
i th component of the trajectory moves away from the des
one. Thus, the quantityt reflects the frequency with which
the system must be perturbed to constrain it to shadow
goal dynamics.

The algorithm provides an adaptive time scale with
which the dynamics selects the correction term to be ad
to the evolution equation of the system. The perturbationU
is inversely proportional to the adaptive OTI and thus
weighted by the information extracted from the dynam
te
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itself. As discussed in@11,12#, this adaptive time scale is
smaller than the time scale of the unstable periodic or
embedded within the chaotic attractor.

Notice that in the limits→0, the algorithm becomes
equivalent to Pyragas’ control strategy@15#, which has been
successfully tested in low- and high-dimensional chaotic s
tems. Nonzero values ofs introduce a variable weighting
factor in Eq.~4! that keeps the perturbation small and appl
it only when necessary.

Let us discuss the problem of constructing the goal
namicsgT(t) from a preliminary observation of the unpe
turbed behavior of the system. For the sake of example,
consider the three-dimensional Ro¨ssler system@16#

ẋ52z2y

ẏ5x1ay ~5!

ż5b1z~x2c!,

with a5b50.2 andc55.7. We first construct a partition o
the phase space in parallelograms of sidese[(e1 ,e2 ,e3).
We defineI (x0 ,y0 ,z0 ,e)5$(x,y,z):x0,x,x01e1 , y0,y
,y01e2 , and z0,z,z01e3%. The initial condition
x(0)5y(0)51, z(0)54 is attracted to a chaotic set,
portion of which is contained in the parallelogra
I T(4.655 146,26.691 886,0.013 528,e), where e
[(0.205 382,0.186 303,0.228 361). This choice ofe corre-
sponds to a box whose sides are 1022 as long as the corre
sponding sides of the smallest parallelogram containing
attractor for t.9743.658 203 (t5tT59743.658 203 is the
time at which the unperturbed trajectory generated by
above initial conditions first entersI T).

The construction of the goal dynamics exploits the natu
evolution of the system from the initial condition up to th
first visit to the target. We do this by constructing a web
paths, each of which is compatible with the unperturbed
namics and connects different parallelograms toI T . That is,
we follow one or more trajectories for a given observati
interval. LetP(I T) denote a preimage ofI T . We record the
portions of the observed trajectories that lie inI T and
P(I T). We then determine successive preimages ofP(I T),
which, in most cases, have been visited previously by
portions of the observed trajectories. Going backward
time, we are able to select from the observations a path
starts from the most frequently visited parallelogramI F and
leads to the boxI T containing the target.~Once the trajectory
entersI T , which typically is near a saddle periodic orbit, w
apply one of the usual control algorithms to keep the traj
tory near the saddle.! The web of paths is illustrated sche
matically in Fig. 1. This construction requires only a sing
probing of the target.

The goal dynamics is an observed path fromI F to I T .
Since the natural measure ofI F is large ~that is, it is fre-
quently visited by the unperturbed dynamics!, the target can
be reached quickly regardless of the initial conditions.

Figure 2~a! reports the results of this targeting procedu
In the trials reported here,I F is reached by the unperturbe
dynamics for the first time whent530.9 sec, and thenI T is
reached by the perturbed dynamics only 1.6 sec later. T
the total time required to reach theI T is 32.5 sec, compared
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to 9743 sec for the unperturbed dynamics to enter the s
neighborhood, for a total speedup of two orders of mag
tude. Figure 2~b! illustrates the mechanism that leads t
system to the target: the path that is followed by the targe
algorithm moves from high probability sections of the attra
tor toward lower probability sections of the same attract
eventually reaching the desired target.

This procedure, however, requires all state variables to
accessible for measurement and perturbation. Thus it ca
be applied in experimental situations, where often only
single state variable of the system is accessible. We n
show how to reformulate the adaptive targeting strategy
restricting our measurements only to thex variable of the
Rössler system and applying the feedback perturbation o
on the first of Eqs.~5!.

It has been shown@11# that the control procedure define
by Eqs. ~2!–~4! is effective in low- and high-dimensiona
cases even if the perturbations are restricted to a single
variable. Thus we can restrict attention to the casei51.

The problem is to retrieve a suitable scalar goal dynam
g(t) from the observations that is compatible with the unp
turbed evolution of the system and comes at least o
within a suitable neighborhood of the target. We will use t
time delay embedding method@17#, which allows us to re-
construct the attractor from a time series of measuremen
a single variable, sayx(t), from Eqs. ~5!. By selecting a
suitable delay timet̃, we consider theD-dimensional

FIG. 1. Procedure for the construction of the goal dynamicsg(t). Each
bubble represents the neighborhood of a point in the phase space.I T : target;
P(I T): unique preimage of the target;Pj„P(I T)…, j51,2,3: multiple preim-
ages ofP(I T); I F : most frequently visited neighborhood. The selected p
is shown as a thick line.
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embedding space containing the vectorsx(t)
[@x(t),x(t2 t̃ ), . . . ,x„t2(D21)t̃ …#. (D53 in our case.!
The reconstructed attractor retains the basic metric prope
of the original; that is, points that are neighbors in the ori
nal phase space with respect to a given metricMR remain
neighbors in the embedding space with respect to some
metricME @18#.

We let t̃55.711 57; this value corresponds to the inver
frequency of the largest peak in the power spectrum of
signalx(t). The target point in the original phase space,
discussed in the first example, corresponds to the poinxT
5„xT(tT),xT(tT2 t̃ ),xT(tT22t̃ )…5(4.727 415, 4.295 067,
4.929 038), wheretT is the time at which the unperturbe
trajectory first enters the neighborhood of the target. T
idea is to retrieve a scalar goal dynamicsg(t) such that
g(t0)5xT(tT22t̃ ), g(t01 t̃ )5xT(tT2 t̃), and g(t012t̃ )
5xT(tT). Here t0 is the instant at which the unper
turbed dynamics x(t) first satisfies the rela-
tions xT(tT22t̃ )2e1/2,x(t),xT(tT22t̃ )1e1/2, where
e150.205 382. These requirements assure that the pertu
tions move a trajectory to the target within a target tim
t012t̃, starting from any initial condition.

The simplest choice ofg is the recorded unperturbed evo
lution of x from tT22t̃ to tT . It is possible that such a
choice ofg is not optimal. Indeed, since our observatio
and perturbations are limited to a one-dimensional subsp
of the original phase space, there is no certainty tha
t5t0 @the instant at which the variablex first enters thee1
interval of xT(tT22t̃ )], the other unobserved variables a
within a sufficiently small distance from their values
tT22t̃. The process could result in an unacceptably la
initial perturbation, so that another choice ofg would be
necessary. Of course, other choices ofg are possible. For
instance, the evolution ofx(t) could be exploited more thor
oughly by constructing two successive webs of on
dimensional paths, the first connectingxT(tT22t̃ ) to
xT(tT2 t̃ ), and the second connectingxT(tT2 t̃ ) to xT(tT).

The selection of a goal dynamics is complicated by
requirement that paths reach from a given point to anot
given point within a specified time. This requirement mo
vates our choice of the delay timet̃ as the reciprocal of the
frequency of the main peak of the signal power spectru
this time is equivalent to the return time of the system o
er

FIG. 2. ~a! An (x,y) projection of the unperturbed Ro¨ssler dynamics~dots! and path followed by the perturbed dynamics to reach the target~thick dashed

line!. The path is inside the chaotic attractor.~b! Enlargement of~a!: the path~solid line! moves from high probability regions of the attractor toward low
probability regions, until reachingI T ~indicated as Target in the Figure!. Initial conditions and control parameters as in the text.s51025,
K15K25K350.01. Similar results hold for different choices ofKj , j51,2,3, ands due to the adaptive nature of the algorithm.
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FIG. 3. ~a! An (x,y) projection of the unperturbed Ro¨ssler dynamics~dots! and path followed by the perturbed dynamics to reach the target~thick dashed
line!. In this case the perturbation acts only on thex variable of Eqs.~5!. Again, the path is inside the chaotic attractor; thus it is compatible with the na
evolution of the system and it goes from higher to lower probability regions.~b! Temporal evolution of the perturbation during the targeting process. The ra
spanned byU1 is less than 1% of the range spanned by thex dynamics. Initial conditions and parameters as in the caption of Fig. 2;K150.02.
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its Poincare´ section. Indeed, if the system is chaotic and
observation interval of the recorded unperturbed dynamic
sufficiently long, then only this choice oft̃ assures an er
godic covering of all the states and guarantees the exist
of at least one path from any initial state to any other fi
state within observation interval.

However, these concerns are largely obviated by a s
able choice ofsÞ0 in the control algorithm. The adaptiv
nature of the procedure assures that the corrections re
small, thus allowing simpler choices of the goal dynamic

In our case, it is sufficient to chooseg(t) as the unper-
turbed dynamics fromtT2Nt̃ to tT (N.2) to guarantee fas
convergence to the target even for small perturbations. W
the integerN should be selected as small as possible to m
mize the waiting time, larger values ofN improve the robust-
ness of the method. Figure 3~a! reports the new phase spa
results forN56. The system has been left unperturbed fro
t50 ~the same initial conditions as before! until
t5t0512.9. Heret0 is the instant at which the unperturbe
dynamics first enters thee1 interval containingx(tT26t̃ ).
The adaptive scalar perturbation has assured a converg
e
is

ce
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to the target within a target time oft016t̃, which again is
more than two orders of magnitude smaller thantT .

The reconstruction in the real space represents a strin
test, since it demonstrates the accuracy and robustness o
method in targeting the desiredI T , even with the simplest
choice ofg. Figure 3~b! shows the range of fluctuations o
the perturbation, and Fig. 3~a! shows the range spanned b
the unperturbedx dynamics. These results illustrate th
smallness of the perturbation required by the adap
method.

It is relevant to notice that our adaptive approach accou
also for the presence of noise, as already explicitly calcula
in several situations in Refs.@10–13#.

In conclusion, we have presented two adaptive targe
procedures that require only a single probing of the targe
the natural evolution of the system. The methods are
limited to invertible mappings and do not needa priori in-
formation on the stability properties of the target.
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